
 

 

 

Encoding Multi-layered Data into QR Codes for Increased Capacity and Security 

 

Prepared by: 

Carly Nesson 

 

Faculty Advisors: 

Dr. Grant Crawford 

REU Site Director, Department of Materials and Metallurgical Engineering 

Dr. Randy Hoover 

Assistant Professor, Department of Electrical and Computer Engineering 

Dr. Alfred Boysen 

Professor, Department of Humanities 

 

Program Information: 

National Science Foundation 

Grant NSF #EEC-1263343 

Research Experience for Undergraduates 

Summer 2013 

South Dakota School of Mines and Technology 

501 E Saint Joseph Street 

Rapid City, SD 57701 

  



Table of Contents 
Abstract ............................................................................................................................................... 3 

Introduction........................................................................................................................................ 4 

Background ....................................................................................................................................... 4 

QR Codes ........................................................................................................................................ 4 

RGB Colorspace .............................................................................................................................. 5 

Objectives .......................................................................................................................................... 6 

Broader Impact ................................................................................................................................. 6 

Procedure ............................................................................................................................................ 7 

Layering QR Codes .......................................................................................................................... 7 

Three Base Colors ........................................................................................................................... 7 

Six Base Colors ............................................................................................................................... 9 

Un-layering QR Codes ................................................................................................................... 10 

Three Base Colors ......................................................................................................................... 10 

Six Base Colors ............................................................................................................................. 11 

Results ............................................................................................................................................... 12 

Discussion ........................................................................................................................................ 12 

Conclusion ....................................................................................................................................... 13 

Summary.......................................................................................................................................... 13 

Future Work .................................................................................................................................... 14 

References ........................................................................................................................................ 16 

Acknowledgments ......................................................................................................................... 17 

Appendix A ...................................................................................................................................... 18 

Appendix B ...................................................................................................................................... 20 

 

 

 

  



Abstract 

Quick Response (QR) codes, currently used in marketing, warehouse management, product 

tracking, and other applications, is currently comprised of only black and white modules. The goal of this 

paper is to discuss the implementation of Colored QR codes in order to increase data capacity and 

security yet still maintain reasonably-sized codes. This objective will be completed by coloring various 

QR codes and using MATLAB to take advantage of the various color channels present. By layering 

colored QR codes, a layered code will present readers with enough information to obtain the original 

codes involved. This paper discusses methods for layering three base colors – Red, Green, and Blue – as 

well as six base colors – High Red, Low Red, High Green, Low Green, High Blue, and Low Blue. 

It was found that layering colored QR codes effectively increased the data capacity three-fold and 

six-fold for three base colors and six base colors, respectively. The layering and un-layering process was 

fairly simple with the use of some basic MATLAB commands. 

  



Introduction 

Background 

QR Codes. A Quick Response (QR) code is a two-dimensional barcode that was 

developed by Denso Wave Incorporated in 1994 for the automotive industry [5]. Today, it has a 

variety of uses in marketing, warehouse management, product tracking, etc. 

Much like a traditional one-dimensional barcode, a QR code holds encrypted information 

in the form of one of four types of information: byte/binary, numeric, alphanumeric, and Kanji – 

a series of Japanese characters [3]. QR codes come in a variety of sizes, all of which are perfect 

squares. The smallest – known as version 1 – measures 21 x 21 elements, or modules, and each 

version expands by 4 elements to the right and 4 elements to the bottom. For example, version 2 

measures 25 x 25 modules, version 3 is 29 x 29 elements, etc., until the highest-developed 

version, which is version 40. Version 40 measures 177 x 177 modules [2].  

One of the unique characteristics of QR 

codes is the error-correction capability. Using a 

mathematical process known as Reed-Solomon 

error correction, users are able to scan QR codes 

effectively even if they are dirty or damaged. In 

each code, there is information about the error 

correction level – low, medium, quartile, or high [2].  

Another unique quality QR codes possess is the application of an encoding mask over the 

content. Its presence ensures readability by eliminating large chunks of darkened modules or 

Figure 1. Standard characteristics present in every QR 

code [2] 



filling spaces with only white elements. Information regarding the type of mask used is available 

in the format information area of each code, as shown in Figure 1 [2]. 

As can be seen in Figure 1, every QR code has some similar basic characteristics, which 

are [2]: 

 Three large blocks in the lower left, upper left, and upper right corners that serve 

as anchors and ensure quick readability 

 One or more smaller blocks – depending on QR version – starting in the lower 

right corner, and in later versions are equally distributed throughout the code 

 A row of alternating black and white modules between the upper left anchor to the 

upper right anchor, as well as a column of alternating black and white modules 

between the upper left anchor and the lower left anchor 

 Version information located above the lower left anchor and to the left of the 

upper right anchor 

 Formatting information located around the upper left anchor, to the right of the 

lower left anchor, and below the upper right anchor 

The knowledge of these fundamental properties will help identify, classify, and 

standardize any QR codes that might be created during research. 

RGB Colorspace. During this research, Mathworks’ 

MATLAB is the primary platform being used. MATLAB 

reads in color images and recognizes them as arrays of 

pixels, each with three layers. Every pixel is represented by 

Figure 2. A 

representation of 

RGB colorspace 

with base colors 

and their 

interactions. [6] 



an array itself, with that array being shown as [R,G,B], or some intensity in Red, some intensity 

in Green, and some intensity in Blue. If every layer has an intensity of 0 (the minimum), the 

color shown is black; an intensity of 255 (the maximum) on every layer displays a white color. 

Figure 2 provides a comprehensive representation of each of the colors and their combinations at 

minimum and maximum intensities. 

Objectives 

In this study, three goals will be achieved. They are as follows: 

1. Singular QR codes will be layered in order to create a layered QR code 

2. Layered QR codes will be un-layered in order to obtain singular QR codes 

3. A system for reading layered QR codes efficiently and effectively will be established 

Broader Impact 

As mentioned in the Introduction, QR codes already have many uses in a variety of 

applications. With this research, QR codes will be expanded in their ability to store data without 

requiring a larger QR code to be used. The whole premise of QR codes is to contain a lot of 

information in a small, encoded space, and this project will optimize that capability and ensure 

varying usability.  

Upon completion of this research, it is hoped that a layered QR code with three layers can 

hold up to 12,888 alphanumeric characters – an equivalent of about 10 pages of double-spaced 

12-point font typing – and a layered QR code with six layers may hold up to 25,776 

alphanumeric characters, or approximately 20 pages of typing. Ultimately, a layered QR code 

with six base layers should be able to hold all of the contents of this paper. 



Procedure 

Layering QR Codes 

Three Base Colors.  This study begins with three separate, herein called ‘singular’ QR 

codes. They are shown below in Figure 3.  

 

 

 

 

 

 

The platform being used is Mathworks’ MATLAB, which recognizes images in RGB 

layers, or three separate layers – red, green, and blue – in which the intensity of each pixel is a 

number between 0 and 255. Knowing this, it is best to transform the singular QR codes into one 

of the three primary colors recognized by MATLAB as shown in Figure 4. In this case, the QR 

codes were colorized using GNU Image Manipulation Program (GIMP), but any photo editing 

software may be used. 

 

 

 

 

QR1: en.wikipedia.org/wiki/Stickley QR2: en.wikipedia.org/wiki/Numb3rs QR3: en.wikipedia.org/wiki/Chopin 

Figure 3. Singular QR codes, obtained by using Kaywa QR Code Generator [4]  

QR1R – QR1 in Red QR2G – QR2 in Green QR3B – QR3 in Blue 

Figure 4. Singular QR codes colorized in RGB (Author's Work) 



Another useful step is to colorize each corner box with one base color, so that, once 

layered, the base colors involved may be easily identified. An example of this can be seen in 

Figure 4. 

After the manipulation of the singular QR codes, reading 

the images into MATLAB and adding them (yes, simply QR1R + 

QR2G + QR3B) produces a layered QR code, much like the one 

shown in Figure 5. 

MATLAB reads this layered image, called IT, as a matrix 

with dimensions {x, y, 3}, where x and y are the horizontal and 

vertical dimensions, respectively, and there are 3 layers, as mentioned before – R, G, and B. 

Using imtool(IT), the user can identify the matrix value for each pixel, meaning simply: for that 

individual pixel, the values on levels [R,G,B] are [#,#,#]. For this example, each color is 

quantified as follows:  

Black   = [ 0, 0, 0 ] 

 White   = [ 255, 255, 255 ] 

Red   = [ 255, 0, 0 ] 

Green  = [ 0, 255, 0 ] 

Blue  = [ 0, 0, 255 ] 

Light Blue = [ 0, 255, 255 ] 

 Pink  = [ 255, 0, 255 ] 

 Yellow  = [ 255, 255, 0 ] 

Figure 5. IT – Layered QR 

code with three base colors 

(Author’s Work) 



Once layered, this colorful QR code can provide three times as much storage space as a 

black and white QR code of the same size.  

Six Base Colors.  Until this point, the paper has discussed the layering of only three color 

channels, with eight possible combinations of color. With the addition of other colors, more 

options and combinations are available; therefore, more data can be stored in the same amount of 

space. One way of going about this is to change the intensities on each color channel – setting a 

‘high’ color with an intensity of 170 and a ‘low’ color with an intensity of 85 – creating 6 base 

options for colors and 35 possible 

combinations. An example of the base 

colors is shown in Figure 6.  

The numbers 170 and 85 were 

chosen because their sum is equal to 

255 and they are distributed equally 

between 0 and 255, allowing for optimal 

distance for increased readability. 

Once again, the base colors can be easily identified once 

layered because the borders of the corner anchors have been colored 

accordingly.  

The quantification of these new base colors and their 

combinations in matrix form can be found in Appendix A. 

 

 

Red Green Blue 

High Color 

[170] 

Low Color 

[85] 

Figure 6. Example of six base colors (Author’s Work) 

Figure 7. Layered QR code with 

six base colors. (Author’s Work) 



Un-layering QR Codes 

Three Base Colors. Since MATLAB reads images in as a series of layers, it is fairly easy 

to – in a way – ‘peel’ those layers apart. As discussed before, each pixel of IT is recognized as a 

set of three intensities: [R, G, B]. By ‘turning off’ certain color channels, we can isolate the 

individual colors. For instance, setting the red and green colors equal to zero will isolate the blue 

color channel. 

The method described above can be easily visualized when looking at the matrix form of the 

pixels. For example, any pink pixel in IT – the layered QR code – is simply a combination of Red and 

Blue, and looks like this:  

  Pink  = [ 255, 0, 255 ] 

An isolation of the red layer will set the green and blue layers to 0, resulting in this: 

   Red   = [ 255, 0, 0 ] 

Any pixel that is pink indicates a full intensity in red, meaning it is red in the red singular QR 

code. On the other hand, any pixel that is Light Blue: 

   Light Blue  = [ 0, 255, 255 ] 

isolated in the red channel: 

   Black  = [ 0, 0, 0 ] 

indicates zero intensity in the red singular QR code. This method allows for a simple 

decomposition of the layered QR code, as long as only three colors – red, green, and blue – are 

involved. 



Once the color channels are isolated, the resulting layers are exactly identical to the 

original respectively colored QR codes. For further information, please reference Appendix B, 

which has the full MATLAB code for the process used. 

 

             Six Base Colors. Un-layering three base colors proved to be relatively simple because it 

was merely a process of isolating layers. However, un-layering a QR code with six base colors 

requires a few extra steps, as shown in the process outlined below. For further information, 

please reference Appendix B, which has the full MATLAB code for the process used. 

1. Isolating the Color Channels 

As described in the section discussing three base 

colors, irrelevant layers need to be turned off. This can 

be accomplished by setting the irrelevant layers equal 

to 0. The result of isolating a color channel can be seen 

in Figure 8. For the sake of clarity, this isolated red 

layer, as shown, will be called ITR. 

2. Obtaining the High Color 

Once the desired color is isolated, a variable called ITR1 

can be created and set equal to ITR. After that, adding 

85 to ITR1 then subtracting 170 will result in an 

identical copy of the original high color, only darker. 

This can be seen in Figure 9. 

 

 

Figure 8. ITR - Isolated 

Red channel with 

intensities at 0, 85, 170, 

and 255. (Author’s Work) 

Figure 9. ITR1 - 

Extracted High Color 

QR code using un-

layering process 

(Author’s Work) 



3. Obtaining the Low Color 

To obtain the low color, the high color that was just 

obtained needs to be removed from the original layered, 

or mixed, color channel, or ITR. This can be done by 

simply subtracting ITR1 from ITR, and then subtracting 

ITR1 from the resulting array. Once completed, the 

original low color, called ITR2, will be present. This is 

shown in Figure 10. 

Results 

Binary (black and white) QR codes can currently hold a maximum of 4296 alphanumeric 

characters. By layering QR codes, the capacity may be greatly increased. For instance, three base 

colors layered can triple the capacity of data, or hold 12,888 alphanumeric characters – an 

equivalent to approximately 10 pages of double-spaced 12-point font typing. Layering six base 

colors creates a code that is able to hold 25,776 alphanumeric characters, which is equivalent to 

about 20 pages of typing. 

Discussion 

This research has enabled a new step in optimizing available resources in regard to QR 

codes. As discussed in the Results section above, the layering processes effectively tripled and 

sextupled the current data capacity available in black and white QR codes of the same size. This 

advancement means greater usability at one’s fingertips. 

Figure 10. ITR2 - 

Extracted Low Color QR 

code using un-layering 

process (Author’s Work) 



Many QR codes used by the general population are simply website addresses and redirect 

the user to something that requires an internet connection. With layered QR codes, however, 

more information can be stored within the QR code, which allows for users to read a QR code 

and not need a connection to the internet.  

For example, one use of colored QR codes might be an instruction manual; if a new 

vacuum cleaner comes with a colored QR code, the user could scan that and have all of the 

information about that vacuum in front of him on his smartphone or tablet. This would save 

resources – paper and ink needed for the instruction manual – and require fewer things for the 

user to keep track of or store. 

Another advantage of layered QR codes is limited accessibility. When a QR code 

redirects the user to a website, that website is almost always accessible by other internet users 

who do not scan that QR code. If the creator of a QR code wants to encrypt information but 

doesn’t want to connect it to a domain on the internet, this is an efficient way of housing that 

information – up to 20 pages – and delivering it to the reader without any unintended 

implications or unwanted viewers. 

These are only a few examples of the many ways that color QR codes might be 

implemented. 

Conclusion 

Summary 

In this study, individual QR codes were colorized and layered to create a layered QR 

code. Firstly, three base colors were used, one base color for each of the three QR codes that 



were used. Secondly, six base colors were used, one base color for each of the six QR codes that 

were used. These base colors were then added to create a colorful layered QR code.  

Once the layered QR codes were achieved, they were un-layered to obtain the original 

QR codes in order to decode them. MATLAB proved to be an effective program for 

understanding and following the encoding, layering, un-layering, and decoding processes.  

The completion of this research established an improvement in data management and 

storage within QR codes. Up to six times the original amount of data was effectively stored in a 

colored, layered QR code than a black and white QR code of the same size.  

 

Future Work 

First and foremost, before any of this research can truly be implemented, appropriate 

software needs to be constructed. The author does not have the skillset that allows for creation of 

said software at this time, but perhaps another researcher’s work could improve the utility of this 

advancement. Ideally, there needs to be a patch created for the existing ZXing software that most 

QR code readers use to allow for the layering and un-layering process to occur [1]. 

Continuation of this work would also require researchers to delve into problem-solving 

aspects of the project; for example, currently this process works perfectly for images that are 

clean-cut and easily read by MATLAB because the colors are perfectly aligned along the RGB 

axes. If a user were to take a picture of the layered QR codes with, say, a cell phone, various 

lighting conditions would inhibit the perfected alignments and make it harder for MATLAB to 

recognize the discrepancies between the colors present. Additional code may need to be written 



to either re-align the RGB layers (using anchor colors) and/or define the threshold values for all 

of the present colors in the code in order to keep them from being confused with one another. 

  



References 

 

1. Dean, T., & Dunn, C. (n.d.). Quick layered response (qlr) codes. Informally published 

manuscript, Electrical Engineering, Stanford University, Stanford, CA, Retrieved from 

http://www.stanford.edu/class/ee368/Project_12/Reports/Dean_Dunn_2D_Color_Barcodi

ng_Using_Iterative_Error_Correcting_Codes.pdf 

2. Denso ADC. (2011). Qr code essentials. Retrieved from 

http://www.nacs.org/LinkClick.aspx?fileticket=D1FpVAvvJuo=&tabid=1426&mid=480

2 

3. Eby, C. (2011, December). Qr code tutorial. Retrieved from http://www.thonky.com/qr-

code-tutorial/ 

4. Free qr code generator and qr management with tracking, analytics, and support. (2013). 

Retrieved from http://qrcode.kaywa.com/dashboard/ 

5. Furht, B. (2011). Handbook of augmented reality. New York, NY: Springer Science 

Business Media, LLC. 

6. RGB [Web Photo]. Retrieved from http://shiftbeep.s3.amazonaws.com/wp-

content/uploads/2009/10/rgb.png 

 

  

http://www.stanford.edu/class/ee368/Project_12/Reports/Dean_Dunn_2D_Color_Barcoding_Using_Iterative_Error_Correcting_Codes.pdf
http://www.stanford.edu/class/ee368/Project_12/Reports/Dean_Dunn_2D_Color_Barcoding_Using_Iterative_Error_Correcting_Codes.pdf
http://www.nacs.org/LinkClick.aspx?fileticket=D1FpVAvvJuo=&tabid=1426&mid=4802
http://www.nacs.org/LinkClick.aspx?fileticket=D1FpVAvvJuo=&tabid=1426&mid=4802
http://www.thonky.com/qr-code-tutorial/
http://www.thonky.com/qr-code-tutorial/
http://qrcode.kaywa.com/dashboard/


Acknowledgments 

The author would like to thank the National Science Foundation for providing the 

funding for this research. Thanks are also due to Dr. Randy Hoover for providing much-needed 

project guidance and advice. More thanks are due to Dr. Grant Crawford for the organization and 

execution of this REU program. Lastly, the author would like to thank Dr. Alfred Boysen for his 

guidance in the writing of this paper and the rest of the REU staff for all the time and effort that 

they have put into this program. 

  



Appendix A 
 

This appendix displays intensity values for six base colors and all possible combinations, 

quantified in matrix form. 

Black (B)    = [ 0, 0, 0 ] 

 White (W)    = [ 255, 255, 255 ] 

High Red (FR)    = [ 170,  0, 0 ] 

 High Green (FG)   = [ 0, 170, 0  ] 

 High Blue (FB)    = [ 0, 0, 170 ] 

Low Red (HR)    = [ 85, 0, 0 ] 

 Low Green (HG)   = [ 0, 85, 0 ] 

 Low Blue (HB)    = [ 0, 0, 85 ] 

HR + LR = Mixed Red   = [ 255, 0, 0 ] 

 HG + LG = Mixed Green  = [ 0, 255, 0 ] 

 HB + LB = Mixed Blue   = [ 0, 0, 255 ] 

HR + HG = High Yellow  = [ 170,  170, 0 ] 

 HR + HB = High Pink   = [ 170,  0, 170 ] 

 HG + HB = High Light Blue  = [ 0, 170, 170 ] 

LR + LG = Low Yellow   = [ 85,  85,  0 ] 

 LR + LB = Low Pink   = [ 85, 0, 85 ]  

 LG + LB = Low Light Blue  = [ 0, 0, 85 ] 



HR + LG = Partial Yellow 1  =  [ 170, 85, 0 ] 

 HR + LB = Partial Pink 1  = [ 170,  0, 85 ] 

 HG + LB = Partial Light Blue 1  = [ 0, 170, 85 ] 

LR + HG = Partial Yellow 2  = [ 85, 170, 0 ] 

 LR + HB = Partial Pink 2  = [ 85, 0, 170 ] 

 LG + HB = Partial Light Blue 2  = [ 0, 85, 170 ] 

MR + HG = Partial Yellow 3  = [ 255, 170, 0 ] 

 MR + HB = Partial Pink 3  = [ 255, 0, 170 ] 

 MG + HB = Partial Light Blue 3  = [ 0, 255, 170 ] 

MR + LG = Partial Yellow 4  = [ 255, 85, 0 ] 

 MR + LB = Partial Pink 4  = [ 255,  0, 85 ] 

 MG + LB = Partial Light Blue 4  = [ 0, 255, 85 ] 

HR + MG = Partial Yellow 5   = [ 170, 255, 0 ] 

HR + MB = Partial Pink 5  = [ 170,  0, 255 ] 

HG + MB = Partial Light Blue 5  = [ 0, 170, 255 ]  

LR + MG = Partial Yellow 6  = [ 85,  255, 0 ] 

 LR + MB = Partial Pink 6  = [ 85, 0, 255 ] 

 LG + MB = Partial Light Blue 6  = [ 0, 85, 255 ] 

  



Appendix B 

 

This appendix provides the reader with the MATLAB code used for layering and un-

layering QR codes with three and six base colors. 

Three Base Colors 

Note: In this section, the files being read in are: 

QR1R – a colored QR code with a background at 255 red 

QR2G – a colored QR code with a background at 255 green 

QR3B – a colored QR code with a background at 255 blue 

 

% Reading in images 

 

% Red 

im1 = imread('QR1R.png'); 

 

% Green 

im2 = imread('QR2G.png'); 

 

% Blue 

im3 = imread('QR3B.png'); 

 

% Creating Layered QR code 

IT = im1 + im2 + im3; 

 

ITR = IT; 

ITG = IT; 

ITB = IT; 

 

% Isolating Red Channel 

% Obtaining Red QR code 

ITR(:,:,2) = 0; 

ITR(:,:,3) = 0; 

 

% Isolating Green Channel 

% Obtaining Green QR code 

ITG(:,:,1) = 0; 

ITG(:,:,3) = 0; 

 

% Isolating Blue Channel 

% Obtaining Blue QR code 

ITB(:,:,1) = 0; 

ITB(:,:,2) = 0; 

 



Six Base Colors 

Note: In this section, the files being read in are: 

QR1R1.png – a colored QR code with a background at 170 red 

QR2G1.png – a colored QR code with a background at 170 green 

QR3B1.png – a colored QR code with a background at 170 blue 

QR4R2.png – a colored QR code with a background at 85 red 

QR5G2.png – a colored QR code with a background at 85 green 

QR6B2.png – a colored QR code with a background at 85 blue 

 

% Reading in images 

 

% High Red 

im1 = imread('QR1R1.png'); 

 

% High Green 

im2 = imread('QR2G1.png'); 

 

% High Blue 

im3 = imread('QR3B1.png'); 

 

% Low Red 

im4 = imread('QR4R2.png'); 

 

% Low Green 

im5 = imread('QR5G2.png'); 

 

% Low Blue 

im6 = imread('QR6B2.png'); 

 

% Creating Layered QR code 

IT = im1 + im2 + im3 + im4 + im5 + im6; 

 

ITR = IT; 

ITG = IT; 

ITB = IT; 

 

% Isolating Red Channel 

ITR(:,:,2) = 0; 

ITR(:,:,3) = 0; 

 

% Obtaining High Red 

ITR1 = ITR + 85; 

ITR1 = ITR1 - 170; 

 

% Obtaining Low Red 

ITR2 = ITR - ITR1; 

ITR2 = ITR2 - ITR1; 

 



% Isolating Green Channel 

ITG(:,:,1) = 0; 

ITG(:,:,3) = 0; 

 

% Obtaining High Green 

ITG1 = ITG + 85; 

ITG1 = ITG1 - 170; 

 

% Obtaining Low Green 

ITG2 = ITG - ITG1; 

ITG2 = ITG2 - ITG1; 

 

% Isolating Blue Channel 

ITB(:,:,1) = 0; 

ITB(:,:,2) = 0; 

 

% Obtaining High Blue 

ITB1 = ITB + 85; 

ITB1 = ITB1 - 170; 

 

% Obtaining Low Blue 

ITB2 = ITB - ITB1; 

ITB2 = ITB2 - ITB1; 


